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In the paper the properties of & }&-approximate solutions of real overdetermined
linear systems Ax=b are investigated. We characterize the norms for which the
approximate solutions are in the convex hull of the basic solutions of Ax=b. For
this purpose we prove some properties of the orthant�monotonic norms. We derive
an explicit formula which expresses the approximate solutions of Ax=b, with
respect to some norms, as convex combinations of the basic solutions for an n+1
by n real matrix A of rank n. Moreover, we consider the relation between the sets
of the weighted approximate solutions for the orthant�monotonic norms satisfying
some additional conditions. � 1997 Academic Press

1. INTRODUCTION

A series of papers has recently appeared which has taken a new look at
the geometric properties of approximate solutions of overdetermined linear
systems (see for example Ben-Israel [2], Ben-Tal and Teboulle [3], Berg
[4], and Miao and Ben-Israel [15, 16]). In this paper we generalize some
of the results presented in these papers.

Let Rm_n
r denote the set of real m_n matrices A of rank r. If A is of

arbitrary rank then we write A # Rm_n. We consider the linear system
Ax=b, A # Rm_n and b # Rm. If this system is inconsistent then we find its
approximate solution x with respect to a norm & }&. Thus we deal with the
problem

min
x # R n

&Ax&b&. (1)

We do not assume that a norm is strictly homogeneous. Therefore we have

&x&�0 with equality iff x=0, &x+y&�&x&+& y&,
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and

&*x&=* &x& for all real positive *. (2)

The minimum (1) is denoted by $. We assume that b does not belong to
the subspace spanned by columns of A. Then $>0.

A solution of (1) is often called an & }&-approximate solution. In particular,
the l2-approximate solutions are the least squares solutions. Other lp norms
give a Chebyshev solution ( p=�) and a l1 solution. In the general case the
objective function &Ax&b& is typically nondifferentiable at the optimal
solutions. Therefore a characterization and computing of & }&-approximate
soutions is hard (see for example Watson [25]).

Let A # Rm_n
n . The basic solutions of Ax=b are solutions of square sub-

systems of the original system, corresponding to nonsingular submatrices
AJ_Rn_n

n of A, where J=[i1 , ..., in] is a subset of [1, 2, ..., m]. The rows
of the submatrix AJ correspond to rows of A with indices in the set J.
Analogously we define bJ . Let

J(A)=[J : det(AJ ){0]. (3)

Then

C#C(A, b)=conv[A&1
J bJ : J # J(A)] (4)

is the convex hull of the basic solutions of Ax=b. Recently, Ben-Tal
and Teboulle [3] have shown that, for A # Rm_n

n and 1�p<�, all
lp-approximate solutions of (1) lie in the convex hull C. For p=� there
is an l�-approximate solution in C. We recall that Chebyshev and
l1-approximate solutions are not unique in the general case.

The result of Ben-Tal and Teboulle [3] was stated for isotone functions,
of which lp norms can be considered a special case, and A # Rm_n

n . Namely,
they have dealt with the problem

min
x # R n

f ( |Ax&b| ), (5)

where |x| denotes a vector whose elements are moduli of elements of x and
f is an isotone function. A continuous function f : Rm

+ � R is isotone if
(compare Ortega and Rheinbold [17, Definition 2.4.3, p. 52])

0�x�y implies f (x)�f ( y ),

where the inequalities between vectors are interpreted componentwise.
Moreover, if for

0�x� y, f (x)=f ( y ) implies x=y,
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then f is strictly isotone. The lp norm is strictly isotone for 1<p<�,
because

0�x�y and &x&p=& y&p implies x=y.

Ben-Tal and Teboulle [3] have proven that if f is isotone then for an
arbirary A # Rm_n

n there exists one solution of the optimization problem
(5) which lies in the convex hull C of the basic solutions of Ax=b.
Moreover, if f is strictly isotone then every solution lies in C. This
approach was inspired by the paper of Berg [4] who has proven this for
the l2 norm. In this paper we extend the result of Ben-Tal and Teboulle to
slightly more general functions than f in (5). This leads to the corollary
that every solution of (1) lies in C for norms which we call strictly orthant�
monotonic norms.

The above results are a generalization of the result of Levitan and Lynn
[12] who have considered the lp norms and A satisfying

A # R(n+1)_n, rank A=n. (6)

Levitan and Lynn have expressed explicitly the lp-approximate solutions of
Ax=b as convex combinations of the basic solutions for the case (6).
These formulae have been presented once more by Miao and Ben-Israel
[15]. The problem (1) for A satisfying (6) or

A # Rm_n, rank A=m&1 (7)

is equivalent to solving some consistent linear system (see Section 3). Using
this system we explicitly express the solutions of (1) for some norms as
convex combinations of the basic solutions. Additionally, we explain why
this expression is not valid for any arbitrary norm. We will show which
properties of a norm decide that a solution of (1) lies in C. For this pur-
pose we investigate the properties of the orthant�monotonic norms (see
Section 2).

We also deal with the weighted approximate solutions of Ax=b.
Namely, we consider

min
x

&D(Ax&b)&, (8)

where D is a nonsingular diagonal matrix. The problem (8) is connected
with weighted projections (see Hanke and Neumann [10], O'Leary [11],
and Stewart [23]; compare with Forsgren [7] and Miao and Ben-Israel
[16]). We give a generalization of some result of Miao and Ben-Israel
[16] concerning the problem (8) with lp norms. Our generalization holds
for some strictly orthant�monotonic norms.
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2. ORTHANT�MONOTONIC NORMS

Let & }& be a norm in Rm. We recall that we have assumed only that a
norm is weakly homogenous (see (2)). The norm & }&* dual to & }& is defined
by

&v&*= max
& y&�1

yTv. (9)

Let v{0 and let v* be a vector for which the maximum (9) is reached

vTv*=&v&*, &v*&=1.

The vector v* is called & }&-dual vector to v (see Sreedharan [20]). This
definition is slightly different from the definition of a dual vector pair in
Bauer et al. [1]. Namely, they call (x, y ) a dual vector pair with respect to
a norm & }& if

yTx=&x& & y&*. (10)

Thus if x{0 then x�&x& is a & }&-dual vector to y. Therefore for x, &x&=1,
a vector pair (x, y) is dual if and only if x is a & }&-dual vector to y, x=y*.

In the general case a & }&-dual vector is not unique. We now recall the
formulae for the dual vectors with respect to the lp norm, 1�p��. For
1<p<� the lp-dual vector v*=[v1*, ..., v*m]T to a nonzero v=
[v1 , ..., vm]T # Rm is unique and it has the elements

vj*=sgn(vj )( |vj |�&v&q)q&1, (11)

where 1�p+1�q=1. A l1-dual vector has the elements

vj*={sgn(vj ) gj

0
if |vj |=&v&� ,
if |vj |<&v&� ,

(12)

where gj�0 and � j gj=1. For p=� we have

vj*={sgn(vj )
hj

if vj{0,
if vj=0,

(13)

where |hj |�1.
In connection with some properties of norms which are needed in the

next section we introduce auxiliary definitions. Let

J(v) =df [ j : vj{0], v # Rm.
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We say that a norm & }& in Rm has property P1 if for every nonzero v=
[v1 , ..., vm]T # Rm and for every & }&-dual vector v*=[v1*, ..., v*m]T to v we
have

vj vj*�0, j=1, ..., m. (14)

If the inequalities (14) and

vj*=0 for j � J(v) (15)

hold for every v* then we say that the norm & }& has property P2. If a norm
has the property P1 and we have

vj*=0 if and only if vj=0 (16)

then the norm has property P3. Immediately from (11), (12), and (13) it
follows that the lp norm has the property P1 for 1�p��. Moreover, the
lp norm has property P2 for 1�p<� and the property P3 for 1<p<�.
We will characterize norms which have the property P1, P2, or P3.

The lp norms are orthant�monotonic ones. A norm & }& in Rm is
orthant�monotonic if for all vectors x=[x1 , ..., xm]T, y=[ y1 , ..., ym]T (see
Gries [8], Gries and Stoer [9], Loizou [13])

|x|�| y | and yj xj�0 ( j=1, ..., m) implies &x&�& y&.

Increasingly important absolute norms are orthant�monotonic, but not
every orthant�monotonic norm is absolute. A norm & }& is absolute if

&x&=& |x| &.

Gries [8] has given an example of an orthant�monotonic norm in R2,
which is not absolute,

&x&={&x&�

&x&2

if x1�0,
if x1�0.

It is known that a norm is absolute if and only if it is monotonic, i.e. (see
Bauer, et al. [1]),

|x|�| y | implies &x&�& y&.

The orthant�monotonic norms have interesting properties. We now
recall a theorem which characterizes these norms (see Gries [8]).
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Theorem 1 (Gries). Let & }& be a norm in Rm. Then the following
statements are equivalent

(i) & }& is orthant�monotonic,

(ii) & }&* is orthant�monotonic,

(iii) vj vj*�0 ( j=1, ..., m) for every & }&-dual vector v* to an arbitrary
v, i.e., the norm & }& has the property P1.

Remark. The last statement of Theorem 1 is formulated in Gries [8]
for a dual vector pair (see (10)). Namely, a norm & }& is orthant�monotonic
if and only if

yTx=&x& & y&* implies yjxj�0 ( j=1, ..., m). (17)

Other characterizations of orthant�monotonic norms are given in de Sa�
and Sodupe [19]. We recall one of them.

Theorem 2 (de Sa� and Sodupe). A norm & }& in Rm is orthant�
monotonic if and only if for any u{0 there exists v{0 such that vTu=
&u& &v&* and vi=0 if ui=0.

Theorem 2 implies that a norm & }& is orthant�monotonic if and only if
for any u{0 there exists v{0 such that v�&v&* is & }&*-dual to u and vi=0
if ui=0. Therefore a norm & }& is orthant�monotonic if and only if for
any v{0 there exists & }&-dual vector v* such that vi*=0 if vi=0 (see
Theorems 1 and 2).

Let us define a strictly orthant�monotonic norm. We say that a norm
& }& in Rm is strictly orthant�monotonic if it is orthant�monotonic and

|x|�| y |, xj yj�0 ( j=1, ..., m), &x&=& y& implies x=y.

This definition is analogous to the definition of a strictly isotone function.
We now prove a characterization of a strictly orthant�monotonic norm.

Theorem 3. A norm & }& in Rm is strictly orthant�monotonic if and only
if it has the property P2.

Proof. Let & }& be strictly orthant�monotonic. Let v* be an arbitrary
& }&-dual to a nonzero v. We define v~ *=[v~ 1*, ..., v~ *m]T,

v~ j*={0
vj*

if j � J(v),
if j # J(v).
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Then

|v~ *|�|v*|, v~ j*vj*�0, &v~ *&�&v*&=1,

&v&*=:
j

vjvj*=:
j

vjv~ j*�&v&* &v~ *&�&v&* &v*&=&v&*.

Therefore &v~ *&=&v*&=1. This implies v~ *=v*. Therefore vj*=0 for
j � J(v). Thus the condition (15) is fulfilled for every dual vector v*. The
condition (14) also is satisfied because the norm is orthant�monotonic.

Let now a norm & }& have the property P2. Then the norm & }& is
orthant�monotonic because of the condition (14) (see Theorem 1). Let x
be a nonzero vector and let y # Rm satisfy

0�|x|�| y |, xj yj�0 for every j, &x&=& y&. (18)

Let z=[z1 , ..., zm]T be a & }&*-dual vector to x. Then we have

xTz=&x&, &z&*=1, zjxj�0 for each j (19)

because the dual norm & }&* is also orthant�monotonic (see Theorem 1).
On the other hand, the relations (19) mean that x�&x& is a & }&-dual vector
to z. Therefore

xj=0 for j � J(z)

since we have the property (15). Thus (see (18) and (19))

&x&=&x& &z&*=xTz� yTz�& y& &z&*=& y&.

This means that y�& y& is some & }&-dual vector to z. Therefore yj=0 for
j � J(z). Consequently we have

:
j # J(z)

xjzj= :
j # J(z)

yj zj= :
j # J(z)

|xj | |zj |= :
j # J(z)

| yj | |zj |,

:
j # J(z)

|zj |( | yj |&|xj | )=0.

Hence xj=yj for j # J(z) because zj{0 for j # J(z), xj yj�0, and
| yj |�|xj |. This completes the proof because xj=yj=0 for j � J(z), so
x=y. K

We now give a sufficient condition for norms which have the property
P3. For this reason we recall the definition of the smoothness of a norm.
A norm & }& is smooth if and only if at every point of the unit norm there

215ORTHANT�MONOTONIC NORMS



File: 640J 302408 . By:CV . Date:27:01:97 . Time:13:44 LOP8M. V8.0. Page 01:01
Codes: 2672 Signs: 1763 . Length: 45 pic 0 pts, 190 mm

is exactly one hyperplane supporting the closed unit ball B=[x # Rn :
&x&�1]. Now H is a hyperplane supporting B at x1 , &x1 &=1, if and
only if there exists y # Rn such that H=[z # Rn : zTy=1] with yTx1=1
and & y&*=1. In other words, a norm & }& is smooth if and only if there
exists exactly one & }&*-dual vector to x1 (see for example Sreedharan
[21]).

Theorem 4. Let a norm & }& be smooth strictly orthant�monotonic. Then
& }& has the property P3.

Proof. We recall that a norm & }& is smooth if and only if & }&* is strictly
convex. Therefore a & }&*-dual vector to a nonzero vector is unique (com-
pare Sreedharan [22, Lemma 2.1]).

Let v* be an arbitrary & }&-dual vector to nonzero v # Rm. Then

vj=0 implies vj*=0 (20)

because the norm is strictly orthant�monotonic (see Theorem 3)). The dual
norm is orthant�monotonic and strictly convex. Therefore a & }&*-dual
vector v$ to v* is unique and v$ has the property (15), i.e., vj*=0 implies
v$j=0 (see Theorem 2). However, it is easy to verify that by the uniqueness
we have v$=v�&v&*. Therefore vj*=0 implies vj=0. This completes the
proof because of (20). K

Gries and Stoer [9] have proven the following very useful property of
orthant�monotonic norms.

Theorem 5 (Gries, Stoer). Let & }& be an orthant�monotonic norm in Rm

and let x=[x1 , ..., xm]T�0, y=[ y1 , ..., ym ]T�0 be nonzero vectors with

xj=0 if and only if yj=0. (21)

Then there exists a diagonal matrix D with positive diagonal elements such
that

(Dx)T (D&1y )=xTy=&D&1y& &Dx&*. (22)

Theorem 5 was proved by Stoer and Witzgall [24] for x>0 and y>0.
If x and y satisfy (21) and xj yj�0 for every j then x~ =D� x and y~ =D� y

are nonnegative for

D� =diag(d� j ),

where d� j=sgn(xj ) for xj{0 and d� j=1 otherwise. Moreover, x~ Ty~ =xTy.
Therefore from Theorem 5 we obtain immediately the following corollary.
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Corollary 6. Let a norm & }& be orthant�monotonic, let nonzero vectors
x, y # Rm satisfy (21), and let xj yj�0 for every j. Then there exists a non-
singular diagonal matrix D=diag(dj ) such that dj xj�0 and D&1y�&D&1y&

is a & }&-dual vector to Dx.

We will use Corollary 6 in the next section to investigate the problem
(8).

3. OVERDETERMINED LINEAR SYSTEMS

It is well known that a vector x # Rn is a solution of (1) if and only if
there exists v # Rm such that (see for example Watson [25, Theorem 1.7])

&Ax&b&= &vTb, vTA=0, &v&*=1. (23)

Let x be a solution of (1). From (23) we obtain &Ax&b&#$=vT (Ax&b)
=&vTb. Thus the vector (Ax&b)�$ is some & }&-dual vector to v. Therefore
there exists a & }&-dual vector v* to v such that x is a solution of the con-
sistent linear system

Ax=b&(vTb)v*. (24)

Unfortunately, in the general case not every & }&-dual vector v* to v gives
by (24) a solution of (1) because b+$v* has to belong to the linear sub-
space spanned by columns of A.

We now prove a theorem which shows that the problem (1) for A
satisfying (7) is equivalent to solving some consistent linear system. We
note that in this case dim ker AT=1.

Theorem 7. Let A # Rm_n
m&1 and let & }& be an arbitrary norm in Rm. Then

x solves (1) if and only if x is a solution of the consistent linear system

Ax=b&(wTb)w*, (25)

where the vector w satisfies

wTA=0, &w&*=1, wTb<0, (26)

and w* is a & }&-dual vector to w. Moreover, $=&wTb.

Proof. Let w satisfy (26). Then b&(wTb)w* # span[w]= because
wT [b&(wTb)w*]=0. This implies that b&(wTb)w* belongs to the linear
subspace spanned by columns of A because ker AT=span[w]. Therefore
the linear system (25) is consistent for every & }&-dual vector w*.

217ORTHANT�MONOTONIC NORMS



File: 640J 302410 . By:CV . Date:27:01:97 . Time:13:44 LOP8M. V8.0. Page 01:01
Codes: 2727 Signs: 1903 . Length: 45 pic 0 pts, 190 mm

Let x be a solution of (1). Then there exists v satisfying (23). Thus the
vector (Ax&b)�$ is some & }&-dual vector v* to v and consequently (24)
holds. The vector v # span[w] because dim ker AT=1. Thus v=:w for some
:>0 since wTb<0 and vTb<0. Therefore v=w because &v&*=&w&*. This
implies that x is a solution of (25). Moreover, $=&wTb.

Let now x be a solution of (25). Then &Ax&b&=&wTb=$ which
means that x is a solution of (1). This completes the proof. K

Theorem 7 was proved by Zie� tak [26] for A satisfying (6) and strictly
homogeneous norms (compare Cheney [5, p. 41], Levitan and Lynn [12],
Meicler [14], Miao and Ben-Israel [15], and Sreedharan [20]). We stress
that the linear system (25) is consistent for every w*, i.e., every w* deter-
mines a solution of (1). Moreover, for each solution x of (1) we can choose
such a w* that x is a solution of the consistent system (25).

Let A # R (n+1)_n
n and let u=[u1 , ..., un+1]T have the elements

uj=(&1) j det Aj , (27)

where Aj is obtained from A by deletion of the j th row. This notation is
slightly different from the definition of AJ in (3). It is easily seen that

det[A, b]=(&1)n+1 uTb. (28)

The matrix [A, b] is nonsingular and uTb{0 because we have assumed
that b is not in the subspace spanned by columns of A and rank A=n.
Moreover, we have uTA=0. It is well known that the least squares solution
x(2) of Ax=b is the unique solution of the so-called normal equation
ATAx=ATb. This implies that

ker AT=span[u]=span[r(2)],

where r(2)=Ax(2)&b. Let

w=;u�&;u&*, where ;=&sgn(uTb). (29)

Then w satisfies the conditions (26).
The submatrices Aj are nonsingular for each j # J(u). The basic solutions

for the system Ax=b, A # R (n+1)_n
n , are

[A&1
j b( j ) : j # J(u)], (30)

where b( j ) denotes a vector obtained from b by deletion of its jth element.
Levitan and Lynn [12] and Miao and Ben-Israel [15] have expressed the
lp-approximate solutions of (1) for 1<p<� as convex combinations of
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the basic solutions (30). Moreover, they have shown that some solutions of
(1) for p=1 and p=� are also convex combinations of the basic solu-
tions. Namely, for p=1 the solution

x=A&1
l b(l ), where the index l is such that |ul |=max

j
|uj |, (31)

lies in C. On the other hand, for p=� the solution

x= :
j # J(u)

|uj |
&u&1

A&1
j b( j ) (32)

is in C. Let + (�)
j =wjwj* for every j, where w is determined as in (29) and

w* is a l�-dual vector to w. Then the vector (32) has the form (see (13))

x= :
j # J(u)

+ (�)
j A&1

j b( j ).

Analogously, we verify that the vector (31) has, in fact, the form

:
j # J(u)

+ (1)
j A&1

j b( j ),

where + (1)
j =wjwj* with a l1-dual vector w* such that in (12) gl=1 and

gj=0 for other j. The formulae (31) and (32) suggest the following
generalization.

Theorem 8. Let & }& be an arbitrary norm, A # R (n+1)_n
n , and let w*=

[w1*, ..., w*n+1 ]T be an arbitrary & }&-dual vector to w=[w1 , ..., wn+1]T

determined as in (29). Then

x= :
j # J(w)

wj wj*A&1
j b( j ) (33)

is a solution of (1) if and only if

wj*=0 for j � J(w). (34)

Remark. We assume that a norm & }& is such that there exists a & }&-dual
vector w* to w satisfying (34).

Proof. We denote y( j )#[ y ( j )
1 , ..., y ( j )

n+1]T=AA&1
j b( j )&b for j # J(w).

Then for j # J(w) we have (compare the proof of Lemma 3.1 in Miao and
Ben-Israel [15])

(&1)n+1&j det[A, b]=(bj&:jA&1
j b( j )) det Aj=&y ( j )

j det Aj ,
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where :j denotes the j th row of A, and bj is the j th element of b. Therefore
for j # J(w) (see (28))

y ( j )
j =&uTb�uj=&wTb�wj

and consequently

y( j )
i ={0

&wTb�wj

if i{j,
if i=j.

Moreover, we have

:
j # J(w)

wj wj*=1 (35)

because &w&*=1. Let x be determined as in (33). Then

z#Ax&b= :
j # J(w)

wj wj*(AA&1
j b( j )&b)= :

j # J(w)

wjwj*y( j ). (36)

Therefore (z=[z1 , ..., zn+1]T )

zj={0
&(wTb)wj*

if j � J(w),
if j # J(w).

Thus z=&(wTb)w* if and only if w* satisfies (34). This completes the
proof because x solves (1) if and only if Ax&b=&(wTb)w* for some w*
(see Theorem 7). K

If

wj wj*�0 for each j (37)

and (34) is fulfilled then the solution (33) is a convex combination of the
basic solutions (30) because we have (35). Unfortunately, this does not
hold in the general case for an arbitrary norm. The condition (37) is
satisfied for orthant�monotonic norms (see Theorem 1).

The coefficients wj wj* in (33) depend on b in the general case because of
the assumption wTb<0. However, they do not depend on b in (31) and
(32). The l1 and l� norms are strictly homogenous. It is easily seen that if
a norm is strictly homogenous then we can omit the assumption wTb<0
in (26). It is connected with the following property of dual vectors. Let & }&
be a strictly homogeneous norm. Then a vector z is & }&-dual to y=&w if
and only if z=&w*, where w* is a & }&-dual vector to w. Thus (wTb)w*=
( yTb)z. Therefore for strictly homogeneous norms we can choose common
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w for all b in Theorem 7 and we have $=|wTb|. Unfortunately, we cannot
omit the assumption wTb<0 in the general case for weakly homogenous
norms.

We now give another formula for solutions of (1). This formula is valid
for arbitrary norms and A satisfying (6).

Theorem 9. Let the assumptions of Theorem 8 be satisfied. Then x is a
solution of (1) if and only if it has the form

x=
;

&;u&*
:

n+1

j=1

(&1) j wj*(adj Aj ) b( j ), (38)

where u and ; are determined as in (27) and (29), respectively, and adj Aj

denotes the adjoint of Aj .

Proof. The consistent linear system (25) can be written in the form

[A, b] _ x
&1&=&(wTb)w*.

A vector x is a solution of (1) if and only if x solves this system for the
appropriate dual vector w*. Solving this system by Cramer's rule we obtain
immediately (38). This completes the proof. K

If adj Aj is a nonsingular matrix then

;
&;u&*

adj Aj=(&1) j wjA&1
j

and consequently (see (38))

(&1) j
;wj*

&;u&*
adj Aj=wjwj*A&1

j .

This explains why the property (34) is crucial if we want to express the
solution of (1) as a combination of the basic solutions. Moreover, we have
the following corollary.

Corollary 10. Let the assumptions of Theorem 8 be satisfied. Then the
vector (38) has the form (33) if and only if (34) holds.

From Theorems 2, 3, and 8 we obtain immediately the following
corollary which is one of the main results of this section.
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Corollary 11. Let A # R (n+1)_n
n and let w be determined as in (29).

(i) There exists a solution of (1) which lies in the convex hull C of the
basic solutions (30) if and only if a norm is orthant�monotonic. Moreover,
this solution has the form (33) for appropriate w*.

(ii) Every solution of (1) is a convex combination of the basic solutions
(30) if and only if a norm is strictly orthant�monotonic. Moreover, in this
case all solutions have the form (33).

A matrix A # R (n+1)_n
n is a Haar matrix if every det Aj is different from

zero. For a Haar matrix the l�-dual vector w* to w is unique. In this case
the unique Chebyshev solution of (1) has the form (32) and it lies in C. If
A # R (n+1)_n

n is not a Haar matrix then the solution of (1) is not unique
and the only l�-dual vector w* satisfying (34) has the elements

wj*={sgn(wj )
0

if j # J(w),
if j � J(w).

For this l�-dual vector w* the vector (33) has the form (32). Therefore the
vector (32) is the only Chebyshev solution of (1) which lies in C. On the
other hand, it is well known that this vector is the strict Chebyshev solution
and it is the limit of the lp-approximate solutions when p tends to � (for
the definition and properties of the strict Chebyshev solution of an over-
determined linear system see for example Descloux [6] and Rice [18]).

As we have mentioned in the Introduction, Levitan, Lynn, Miao, and
Ben-Israel have expressed the lp-approximate solutions of Ax=b for
A # R (n+1)_n

n as the convex combination of the basic solutions. Corollary
11 generalizes their result and answers the question when a solution lies in
C. The same approach can be used to a generalization of some results
which are known for minimum l2-norm lp-approximate solutions for
A # Rm_n

m&1 (see Section 4 in Miao and Ben-Israel [15]). This possible
generalization will be considered in another paper.

If an isotone function f is such that f ( |x| ) is a norm in Rm then this
norm is absolute. Therefore the problem (5), for an isotone function f being
a norm, is the problem (1) for an absolute norm. Therefore the result of
Ben-Tal and Teboulle, concerning the problem (5), is valid also for the
problem (1) with absolute norms. On the other hand, we have Corollary
11 and we know that an absolute norm is orthant�monotonic. This
suggests that the result of Ben-Tal and Teboulle holds for slightly more
general functions f than isotone ones. Indeed, we show that the proof of
their Theorem 2.2 in [3] is true also for the problem

min
x # R n

g(Ax&b), (39)
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where the continuous function g: Rm � R satisfies

|x|�| y |, xj yj�0 ( j=1, ..., m) implies g(x)�g( y). (40)

We say that g, satisfying (40), is orthant�isotone. If additionally we have
that

g(x)=g( y ) implies x=y, (41)

then g is strictly orthant�isotone. From (40) we obtain g(0)�g( y ) for every
y # Rm. We now prove a generalization of Theorem 2.2 from [3].

Theorem 12. Let g be orthant�isotone and let A # Rm_n
n . Then there

exists a solution of (39) which lies in the convex hull C of the basic solutions
of Ax=b. Moreover, if g is strictly orthant�isotone, then every solution of
(39) lies in C.

Proof. The proof of the theorem is exactly the same as the proof of
Theorem 2.2 in Ben-Tal and Teboulle [3] because a stronger relation than
(7) in [3] is true in fact. Therefore we give only the second part of the
proof.

Let x # Rn and let x=s+d, where the statement of s and d is given in
the proof of Theorem 2.2 in [3]. Then s # C and we have (see (7) in [3])

|Ax&b|=|As&b|+|Ad |. (42)

However, a stronger relation than (42) holds because the i th elements
(i=1, ..., m) of the vectors Ax&b and As&b have a common sign. More
precisely, we have

[(Ax&b) i ][(As&b) i ]>0 or (Ax&b) i=(As&b) i=0 (43)

where (Ax&b) i denotes the i th element of the vector Ax&b. This follows
immediately from the definitions of s and d (see Ben-Tal and Teboulle
[3]). Therefore g(Ax&b)�g(As&b) because g is orthant�isotone. Conse-
quently we obtain

min
x # R n

g(Ax&b)=min
s # C

g(As&b).

Thus the first part of the theorem is proven.
Let now g be strictly orthant�isotone and let x be any solution of (39).

Then x=s+d as above. From the first part of the theorem and the fact
that x is a solution of (39) it follows that g(As&b)=g(Ax&b). Since g is
strictly orthant�isotone we must have As&b=Ax&b and Ad=0 by (42)
and (43). Because rank of A is n we obtain d=0 which implies x=s # C.
This completes the proof. K
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From Theorem 12 we obtain the following corollary.

Corollary 13. Let A # Rm_n
n . If a norm & }& is orthant�monotonic then

there is a solution of (1) in the convex hull C of the basic solutions (4).
Moreover, if & }& is strictly orthant�monotonic then every solution lies in C.

Let us return to the problem (8) with an arbitrary matrix A # Rm_n
n .

Miao and Ben-Israel [16] have considered relations between the sets

H+=[(ATDA)&1 ATDb: D # D+], (44)

H (& }&)
+ = .

D # D+

[x: arg min
x

&D(Ax&b)&], (45)

where D+ denotes the set of all nonsingular diagonal matrices with positive
diagonal elements. The set H+ is the set of all solutions of the weighted
least squares problems for all D # D+

.
D # D+

[x: arg min
x

&D1�2(Ax&b)&2].

Therefore H (l2)
+ =H+ . Miao and Ben-Israel [16] have shown that for

A # Rm_n
n we have the following relations

H (l2)
+ =H (lp)

+ , 1<p<�, (46)

H (l2)
+ �H (l1)

+ . (47)

We now extend this.
Let now A # Rm_n. Analogously as (45), we define H (& }&) for D which is

the set of all nonsingular diagonal matrices D

H(& }&)= .
D # D

[x: arg min
x

&D(Ax&b)&]. (48)

We now prove that relations similar to (46) and (47) hold between H(& }&)

for some class of orthant�monotonic norms, which contain the lp norms as
a subclass. We note that if rank A<n then H(l 2) defined as in (48) does
not have the form (44).

Theorem 14. Let a norm & }&(1) have the property P3, let a norm & }&(2)

have the property P1, and let A be an arbitrary matrix, A # Rm_n. Then for
every solution x~ of the problem (1) with respect to the norm & }&(1) there
exists a nonsingular diagonal matrix D� such that x~ is a solution of the problem

min
x

&D� (Ax&b)&(2) . (49)
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Proof. Let x~ be an arbitrary solution of (1) with respect to the norm
& }&(1) . Then there exist a nonzero vector v and an & }&(1)-dual vector v* to
v such that x~ is a solution of the consistent system (24). Moreover, (23)
holds for x~ and v. Since & }&(1) has the property P3 we have (see (14) and
(16))

vj vj*>0 or vj=vj*=0.

However, the norm & }&(2) is orthant�monotonic. Therefore there exists a
nonsingular diagonal matrix D such that (see Corollary 6)

v~ *=D&1v*�&D&1v*&(2)

is a & }&(2)-dual vector to v~ =&D&1v*&(2) Dv and &Dv&*(2) &D&1v*&(2)=1.
We define

b� =D&1b, A� =D&1A.

Then we have

&A� x~ &b� &(2)= &v~ Tb� , &v~ &*(2)=1, v~ TA� =0.

This implies that x~ is a solution of (49) for D� =D&1 because the conditions
analogous to (23) are satisfied by v~ for the problem (49). This completes
the proof. K

From Theorem 14 we obtain immediately the following corollary.

Corollary 15. Let the assumptions of Theorem 14 be satisfied. Then

H(& }&) (1))�H(& }& (2)). (50)

If additionally the norm & }&(2) has the property P3 also then the equality
holds in (50). In particular, if a norm & }& is smooth strictly orthant�
monotonic then

H(& }&)=H(l2).

Moreover, for any arbitrary orthant�monotonic norm & }& we have

H(l2)�H(& }&).

We recall that the lp norms, 1<p<�, have the property P3. Therefore
it is not surprising that H (l 2)

+ =H (l p)
+ because in this case the problem (49)

does not depend on the sign of the diagonal elements of D. We stress that
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the relations (46) and (47) were proven by Miao and Ben-Israel for
matrices A of full column rank. However, in Theorem 14 the matrix A has
arbitrary rank.

If A # Rm_n
m then the system Ax=b is consistent, but its solution can be

non-unique. Miao and Ben-Israel [16] have investigated the properties of
the minimum lp norm solutions of the consistent system Ax=b. Their
results can be extended to the case of more general norms. A possible
generalization will be presented in Zie� tak [27].

Let G be a generalized inverse of A, AGA=A. A generalized inverse of A
always exists and it is not unique unless A is nonsingular. A & }&-approximate
generalized inverse of A is such a generalized inverse G that (see for example
Zie� tak [26])

&AGb&b&= min
x # Rn

&Ax&b& (51)

for all b # Rm. It is not guaranteed in the general case that such a matrix
G exists. If A # R (n+1)_n

n then a & }&-approximate inverse exists and all
approximate inverses are given explicitly, by very simple formula, for every
norm (see Zie� tak [26]). Miao and Ben-Israel [15] have given another
expression for the lp-approximate generalized inverses of A # R (n+1)_n

n . The
approach of Miao and Ben-Israel was inspired by the paper of Berg [4]
(see also Ben-Israel [2]). Their formulae can be easily extended to the case
of more general norms using the results presented in this paper (see Zie� tak
[27]).
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